Lightweighting strategies with Chemical Foaming of thermoplastic parts in Automotive Applications

MATERIAUTEC
LYON 30TH JUNE 2015
Table of Contents

- Climate change and CO$_2$
- Fundamentals of chemical foaming technology
- Chemical foaming agents. Application in Injection moulding
- Weight reduction in automotive. Application examples
- Conclusions
Climate change and CO₂

OPPORTUNITIES FOR PLASTICS IN AUTOMOTIVE
The global automotive industry is working hard to reduce the environmental impact of cars

- Road transport is responsible for **16% of total man made CO₂ emissions**
- In the recent years, the automotive industry delivered already **13% reduction of CO₂ emissions** through improved vehicle performance (1995-2005)
- Further efforts are being done in multiple areas
 - Engine and transmission
 - Improved aerodynamics
 - Friction reduction
 - **Light weight materials**
 - Alternative fuel technologies
 - Hybrid, plug-in
 - ... and others

Source: OICA
Global targets for CO2 emissions reductions for cars

- Standards for cars and for commercial vehicle/light truck are now compared separately.

- EU 2021 target of 95 g/km becomes the current most stringent numerical standard

- US 2025 target of 97 g/km

- Japan standards 2020 CO2 emission target of 122 g/km (high market share achieved by hybrids in Japan, expected to be on par with or surpass the EU’s 95g/km target)

- South Korea’s to set a 2020 target which will move them to a leadership position in passenger car CO2 emission standards.

Source: ICCT (The international Council of clean transportation)
Weight reduction continues to be a need and an opportunity for vehicle producers

Fleet average CO₂ emissions are being continuously reduced

New cars sold in 2014 in the EU emitted on average 123.4 g CO₂/km significantly below the 2015 target of 130 g CO₂/km.

Average emissions levels in 2014 were below 130 g CO₂/km in 17 of the 28 Member States.

Nearly 20% of the car is made of plastic materials

Increased use of plastics and chemically foamed plastics allow significant density reduction

Source: ICCT 2014
Light weighting strategies

Foamed plastics allow significant density reduction

- **Material**
 - Steel 7,83
 - Aluminium 2,74
 - Magnesium 1,74
 - Chemically foamed PP 0,47
 - Natural cork 0,24

Thermoplastics can easily be foamed by CFA

CFA: Chemical Foaming Agents
Fundamentals of chemical foaming technology

HYDROCEROL®
Basic principle of Chemical Foaming Agents
Types of Chemical Foaming Agents

Exothermic agents

CFA (exo) \(\xrightarrow{+\Delta E}\) \(N_2 + \Delta E_2 + \text{organic subprod.}\)

Endothermic agents

CFA (endo) \(\xrightarrow{+\Delta E}\) \(\text{CO}_2 + \text{H}_2\text{O} + \text{inorganic subprod.}\)

Active ingredients

- azodicarbonamide
- sulfonylhydrazide
- 5-feniltetrazol

Active ingredients

- sodium bicarbonate
- citric acid and its salts

DSC profile

- Exothermic decomposition
- Endothermic decomposition
Properties of Chemical Foaming Agents

- Activation range
- Polymer processing temperature

![Graph showing activation range and polymer processing temperature for citrate, mixture citrate/bicarbonate, mixture citrate/bicarbonate, and bicarbonate.](image)

![Images of NaHCO₃ and Citrat](image)
The chemical foaming process

Plasticizing Reaction Dispersion Foaming (nucleation and expansion)

Injection

Extrusion

Blow molding
Chemical Foaming Agents (CFA)

APPLICATION IN INJECTION MOULDING
Benefits of usage of Hydrocerol® in Injection Moulding

- Density reduction to save material and weight
- Reduction of sink marks
- Process Aid, Cycle Time Reduction
- Increased dimensional stability, less warpage
- Clamping force reduction, Smaller machines
- Improved Thermal and acoustic insulation
- Worldwide availability, standard machines useable
Thermoplastic foam injection moulding (TFIM), Machine Set Up

TFIM with Hydrocerol®
- appropriate temperature setup needed
- dosage by gravimetric or volumetric feeding
- better with shut off nozzle
→ low investment

Source: Frauenhofer ICT
Thermoplastic foam injection moulding (TFIM), 2 processes:

« Classical » injection molding process

« Core back expansion » injection molding process
Chemical Foaming Agents in “Classical” Injection Molding

Important parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back Pressure</td>
<td>A specific pressure of 40 bars should be applied to avoid premature foaming. Recommendation: use of shut-off nozzle.</td>
</tr>
<tr>
<td>Holding Pressure</td>
<td>Should be as low as possible (ideally zero) to allow nucleation and expansion of the dissolved gas.</td>
</tr>
<tr>
<td>Shot weight</td>
<td>Reduced, to give room for the gas to expand (needed if weight reduction is required).</td>
</tr>
<tr>
<td>Injection Speed</td>
<td>As high as possible, to prevent premature expansion of the gas and forming of silver streaks.</td>
</tr>
<tr>
<td>Temperature profile</td>
<td>Dependent on CFA type.</td>
</tr>
<tr>
<td>Mold Venting</td>
<td>Needs to be optimized, to get highest weight reduction and smooth surface.</td>
</tr>
</tbody>
</table>
Chemical Foaming Agents in “Classical” Injection Molding
Surface appearance

Equipment/Process

CFA can usually be processed on every common injection molding machine

- Shut-off-nozzle, to avoid premature foaming
- Gates and flow path should be configured in a way as to allow a fast and even mold filling
- Very good venting at the end of the flow path
Surface Finish

HYDROCEROL®
smooth surface

Physical Foam,
streaks visible,
often no painting possible
Core Back Expansion Process

Phase 1: Injection
- In the 0.5 - 1mm opened cavity
- Fast injection of melt
- App. 1 – 2 s dwell time

Phase 2: Expansion
- Expansion of the mold up to 5mm in one or two directions
- The density of the part is controlled by tool opening

Phase 3: Cooling
- The density of the part is controlled by tool opening

Conventional TSG
- Excellent weight to strength relation
- Very high degree of foaming possible (above 50%)

Core Back Expansion
PP Glassfiber with 2% Hydrocerol® ITP 815
Density Reduction controlled by mold opening

PP Glassfiber compact
1,6mm thickness

unfoamed Material, $\rho = 1.07$ kg/l

24% Density Reduction
2,1mm thickness

$\rho = 0.81$ kg/l

46% Density Reduction
3,0mm thickness

$\rho = 0.57$ kg/l

56% Density Reduction
4,6mm thickness

$\rho = 0.47$ kg/l

Source: LyondellBasell, SFIP Congress 2011
Core back expansion
Choice of Matrix polymer

Delamination with wrong choice of PP

High melt strength PP with good sandwich foam

Source: LyondellBasell, SFIP Congress 2011
Weight reduction in Automotive

APPLICATION EXAMPLES
CFA in structural application
Dashboard carrier

- Reference: BMW 3 and 5 series dash board carrier

- Polymer: PP 20% LGF

- Process: BMW SGI Process
 - Weight Reduction 20%

- 2012 Technology transfer to new BMW models

- 1.5 – 2.0% Hydrocerol®
CFA in application
Air Ducts

- Reference: Audi A8 Air Duct
- Polymer: LDPE
- Part: Air ducts, Blow Molding
- Benefits:
 - Weight reduction (30%)
 - Easier assembly
 - Acoustic insulation
 - Heat insulation

2% Hydrocerol®
CFA in visible application
Much more to come...

- Decorated Gearbox
- Door Panels
- Interior trims
- Wheel Arch
- ...

Decorated Gearbox
Door Panels
Interior trims
Wheel Arch
Conclusions
Conclusions

Chemical foaming …

- is a well-established technology which can be broadly used across multiple plastic processing methods and applications

- allows plastic molders to produce lighter articles without major investments

- can contribute to achieve automotive industry challenges related to CO₂ emissions and overall carbon footprint reduction
Disclaimer

This presentation contains certain statements that are neither reported financial results nor other historical information. This presentation also includes forward-looking statements.

Because these forward-looking statements are subject to risks and uncertainties, actual future results may differ materially from those expressed in or implied by the statements. Many of these risks and uncertainties relate to factors that are beyond Clariant’s ability to control or estimate precisely, such as future market conditions, currency fluctuations, the behavior of other market participants, the actions of governmental regulators and other risk factors such as: the timing and strength of new product offerings; pricing strategies of competitors; the Company's ability to continue to receive adequate products from its vendors on acceptable terms, or at all, and to continue to obtain sufficient financing to meet its liquidity needs; and changes in the political, social and regulatory framework in which the Company operates or in economic or technological trends or conditions, including currency fluctuations, inflation and consumer confidence, on a global, regional or national basis.

Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this document. Clariant does not undertake any obligation to publicly release any revisions to these forward-looking statements to reflect events or circumstances after the date of these materials.